If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48-64t=16t^2
We move all terms to the left:
48-64t-(16t^2)=0
determiningTheFunctionDomain -16t^2-64t+48=0
a = -16; b = -64; c = +48;
Δ = b2-4ac
Δ = -642-4·(-16)·48
Δ = 7168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7168}=\sqrt{1024*7}=\sqrt{1024}*\sqrt{7}=32\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-32\sqrt{7}}{2*-16}=\frac{64-32\sqrt{7}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+32\sqrt{7}}{2*-16}=\frac{64+32\sqrt{7}}{-32} $
| 52-(4x+7)/5=49 | | 6(x+2)+4(3–x) =30 | | (4v-7)(v+1)=0 | | 3038=34(p+25) | | -10p-4(5-5p)=6(p-6)-24 | | 6(3a+2)=a-39 | | 1/x-4=16 | | 3(X+5)=25-2x | | 48+b=47 | | |b+4|-2=4 | | 1.4=b/2.5+2 | | -6(p-93)=48 | | 9u+12=66 | | -5=3b-11 | | 3(1+g)=15 | | f+71/10=0 | | -4(y+-17)=32 | | 4b+6=154 | | -14+7d=-49 | | -2(n-1)=-5-n | | r/3+7=8 | | -b/36= | | 4q-14=-2 | | F(-1)=5x+17 | | 15=5(m−94) | | 8(v+4)-2v=2(3v+2)-8 | | 1-c/3=1 | | X2-2x-11=0 | | 7(x-4)+5=7x+3 | | X^3-3x^2-10x+30=0 | | d-13=24 | | (3x-3)-7=5+(x-1) |